An Introduction to Geometric Measure Theory

Colin Carroll Rice University 31 March, 2011

major way if you keep saying that.

1684: Calculus

1696: Brachistochrone

Enter the Bernoullis

Jacob

Johann

The Calculus of Variations

Euler

Lagrange

1684: Calculus		1766: Calculus of Variations		
9	9	٢		
1696: Brachistochrone				

The Calculus of Variations

Find a real valued function *u* that minimizes:

$$F[u] = \int L(u', u, x) dx$$

"Functional"

"Lagrangian"

1684: Calculus 0 1696: Brachistochrone $\frac{1 + \left(u'(t)^2\right)}{2g u(t)} dt$ $F[u] = \int \sqrt{1}$

Jacob

Johann

Joseph Plateau

"Phenakistoscope"

1766: Calculus of 1684: Calculus Variations 1696: 1873: J. Plateau Brachistochrone Plateau's Laws 1. Soap films are made of entire smooth surfaces. 2. The curvature is constant on any piece of soap film. 3. Soap films always meet in threes at 120 degrees ("Plateau border"). 4. Plateau borders meet in fours at a vertex, at a constant angle.

Plateau's Laws

- 1. Soap films are made of entire smooth surfaces.
- 2. The curvature is constant on any piece of soap film.

Is there a surface with given boundary that has least area?

Why is this impressive?

•Born in Hungary (1895), went briefly to school before enlisting for WWI.

•One of 600,000 taken prisoner on the Russian front.

•Sent to Tobolsk, Siberia. Studied with Helly, an eminent mathematician, in the camp.

•Escaped, befriended eskimos in the arctic, and eventually got back to Hungary.

•Went back to school, studied under Frigyes Riesz.

•Visited Rice Institute in 1929.

- •Solved Plateau's problem in 1930.
- •Worked at Ohio State until retirement.

Solved Plateau's problem independently and differently.
Won Field's Medal for his work
Married a woman named Jessie.
Awkward.

Currents: surfaces:: Complex numbers: real numbers.

 $12x^7 - 40x^6 - 19x^5 + 188x^4 - 157x^3 - 100x^2 + 164x - 48 = 0$

Next Steps: Regularity

Jean Taylor

Fred Almgren

How smooth?

Ambient Dimension, n	Dimension of surface	Smoothness of solutions to Plateau's problem
<8	n-1	Real analytic
8 or more	n-1	Might have singularities of dimension n-8.
Any n	Any m <n< td=""><td>Might have singularities of dimension m-2.</td></n<>	Might have singularities of dimension m-2.

Regularity

James Simons. Net worth: \$10,600,000,000.00

Isoperimetric Problems

The Double Bubble: 2001, Frank Morgan

